
paper, applied by the method of longitudinal-transverse wrapping and utilizing the low vapor temperatures of the stored 

fluid in the temperature interval from 4.2 through 293 K. 

NOTATION 

Qine, Qv.e, Qr., heat flows: through the insulation, through the vapor-cooled throat section, total; A, coefficient 
of thermal conductivity; (dT/dX)eold, change in temperature at the cold end of the throat section or some segment of 
the latter; f, lateral cross-sectional area; F, F h, Fc, surface areas of the insulation: average, hot, and cold boundary surfaces; 
8, insulation thickness; T h, T e , temperatures of the hot and cold ends of the throat sections; T 1, T2, boundary temperatures 
of the insulation layer; m, gas flow rate; r, heat of cryogenic-fluid vaporization; Cp, heat capacity of the gas. Subscripts: 
ins, insulation; w, wall; pl, plug; g, gas; av.eff, average effective; i, number of throat segments and insulation; b, boiling. 
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EFFECT OF INJECTING AN ION BEAM IN A DENSE PLASMA 

ON THE STRUCTURE OF THE PERTURBED ZONE 

V. A. Kotel'nikov and V. P. Demkov UDC 533.9 

A hydrodynamic description of a weakly ionized dense plasma with constant properties and frozen- 
in reactions of formation and the extinction of charged particles serves as the basis for our examination 
of the influence exerted by the injection of a beam of negative ions on the characteristics of  the wall 
layer. 

The study of the interaction of beams of charged particles with a plasma is one of the primary problems confronting 
plasma physics. The substantial difficulties which arise in the utilization of electron beams, as well as the considerable 
achievements attained in the development of powerful apparatus for the pulsed generation of strong ion beams, has led 
to a situation in which greater attention is being devoted to the latter. 

We examine the plasma-beam formation restricted by a nonconducting wall into which has been built an electrode 
whose potential may vary relative to the surrounding plasma. The configuration of the beam-plasma system is shown 
in Fig. 1. 

Let us examine an axisymmetric ion beam propagated through a plasma, parallel to an external magnetic field 
Bee,. If the axial current of the plasma is only partially neutralized by a countercurrent flowing through the plasma, 
the resulting axial current will generate an intrinsic azimuthal magnetic field B0S(r, z)e 0. If, in addition, the space charge 
of the beam is only partially neutralized by the surrounding plasma, while the electrode is subjected to some potential, 
then the deviation of the charge from a neutral state will lead to the appearance of radial E r and axial E z electric fields. 

Serge Ordzhonikidze Aviation Institute, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 
2, pp. 221-225, August, 1990. Original article submitted July 11, 1988. 
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Fig. 1. 
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Plasma beam column: 1) wall; 2) electrode; 3) beam. 

For purposes of analyzing the system, let us make a number of simplifying assumptions: 1) the electrode is shaped 
in the form of a disk whose axis is oriented parallel to the external magnetic field; 2) the external axial magnetic field 
Bo% is uniform; 3) the distribution of all physical quantities is azimuthally uniform relative to the axis of the magnetic 
field Bo; 4) the azimuthal current j0(r, t) -- ~,, q~na(r, t)V0a(r, t), which generates the axial magnetic field BsS(r, z)%, 
is rather small, so that the intrinsic magnetic field can be treated as negligibly small in comparison to the external field, 
i.e., [ B,? [ << [ Bo l; 5) up to the instant of time to: a) the external field B o increases according to some law; b) there 
is no beam injection; c) we neglect the intrinsic magnetic fields; for the times t > to: a) the external magnetic field is 
constant; b) a nonrelativistie ion beam is injected. 

In the ease of a uniform external magnetic field Bo(t) the strength of the electric field E 0 will be determined from 
the expression: 

r dBo Zo(r, t ) -  
2c dt 

Within the scope of the adopted assumptions, we have the following significant field components: 

(1) 

E(r, 0, z, l ) =  {E~(r, z, t), Eo(r, t), Ez(r,  z, /)}; 

B(r, O, z, t)== {0, B~o(r, z, t), B0ft)}, 
(2) 

where the components Er, E,., and B08 are determined from the self-consistent Maxwell equations: 

013'o 1 0 E r  4~ . OE~ OE z 1 0 B S o  
0"-'-'7- = c Ot -7 -  I~; Oz O ~  --  c Ot ' 

1 0 rB~ 1 OE~ + 4a . 1 0 OE~ 
. . . .  Iz; - - ~  rE~ q- = 4a9. 
r Or c Ot c r Or Oz 

(3) 

For electromagnetic fields (2) the equations of the macroscopic model in the case of thermodynamic equilibrium 

can be written in the form 

Ot r Or 1 q- ~2o~ -Jr- ff2~c~ 

-Jr- f 2 ~ n ~ E o  - -  g2o~ ( l&,n~Ez D On~ - oT)]}§  

o{ 1 I (  
On,z 

(4) 
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Fig. 2. Evolving curves for charged particles flowing to the electrode when ~o o 
<0: l) np ~  ~  np ~  ~  

where 

f 2%--  q=B~~ " f2z~-- q~Bo �9 D~ kT~ q= 
m~%c ' m ~ v ~  ' = m~v'--'--~ ; ~ = --m~v~ 

The remaining notation is analogous to [I ]. The relationship between the systems of equations (3) and (4) is self-evident. 
Up until the instant of injection onset, the initial and boundary conditions for system of equations (4) can be 

formulated in a manner identical, for example, to [1, 2]. The resulting steady solution of problem (4) serves as the initial 
conditions in the beam injection stage. 

As a consequence of the collision of the beam particles with the plasma components the beam velocity Up after 
its injection into the plasma will relax over time according to the equation 

( o )  { } 
'npnv --b7 6- UpV Up = qvnp E 6- 1-2-c [Up, B! - -  v k T p n p - -  mpnpUpvp,. ( 5 )  _ 

where the subscript p pertains to the injected particles, while the beam ion collision frequency up for the weakly ionized 
gas can be determined in accordance with the theory developed in [3]. 

The boundary conditions for the plasma are conserved at the instant of time to, corresponding to the onset of injection. 
The velocity of the negative ions in the injection plane Up(r ~ G, t) = Up~ where Up~ represents the unperturbed 
beam velocity and G defines the surface of the electrode. At the outside boundary, in order to achieve smoothness, we 
can make use of a linear, quadratic, or cubic extrapolation, as is done for fluid flows [4]. 

The equation of  motion (5) for beam particles must be completed with the continuity equation 

cg_np 6- div npUp = 0 (6) 
Ot 

having the conditions 

0. n v(r, to)=O; n v(rEG, t ) = n p ,  n v ( r . ,  t ) = O ,  (7) 

where np ~ is the density of the beam at the axis of system symmetry for the case in which z = 0. 

The problem in such a formulation permits of no analytical solution. With numerical modeling to calculate 
electromagnetic fields we made use of the algorithm proposed in [5], which allows us to carry out our calculations with 
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Fig. 3. Profiles for  the distribution of  charged-particle concentrations; notation the same 

as in Fig. 2. 
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Fig. 4. Evolving curves for  charged particles flowing to the electrode when ~o ~, 

0; notation the same as in Fig. 2. 

grid dimensions considerably in excess of the Debye length. With this method it is possible to minimize the numerical 
diffusion and, moreover,  it is capable of suppressing the instabilities associated with plasma waves. For solution of the 

continuity equations we employed the large-particle method [6], for  which the system of  equations (4) was brought to 
divergent form. A uniform grid with a dynamic outer boundary was used in the calculations, and this can be ascribed 

to the space-time development of  the beam. The problem was solved in dimensionless form [1]. 
Figures 2-4 show some of the computational results with respect to the cited model for  beams of  varying intensities, 

given linear electrode dimensions of  r o -- 5 and surface potentials of go = _+10. 
For electrodes with negative displacement at the start of the evolution of  the perturbed zone, the presence of the 

beam leads to a reduction in the flow of  positive plasma ions to its surface, which is a consequence of  the formation at 
the surface of an uncompensated negative space charge and, consequently, of a potential hole. With an increase in the 

velocity at which the beam is injected into the plasma, given identical particle density through the cross section, the ion 
flux attains a steady value more slowly. The steady-state value of  the ion current to the electrode is lower than its value 
for the case in which jpo = 0. Moreover, with an increase in the velocity Up ~ of beam injection in the evolution ion- 
current curves the appearance of pulsations becomes possible (Fig. 2). With negative values of  ~o o the electron conductivity 

current Je to the surface of the electrode, exhibiting a relatively high value at the start of the evolution process, rapidly 

diminishes, experiencing no oscillations. Some increase in the value of Je initially, in the presence of the beam, above 
its value for the case in which jpo = 0 is caused by the change in the sign of the electric-field strength vector in the immediate 

vicinity of the injected surface. With the development of the processes over time the potential hole is dispersed and the 

electron current diminishes all the more rapidly, the more intensive the beam (Fig. 2). 
With variation of jpo the electron curves ne(z) substantially "bend toward" the coordinate axes (Fig. 3). In the 

presence of the beam, if the magnetic field B o in the z direction does not affect  the behavior of the curves, then in the 
radial direction the curves ne(r) move closer to each other. In the ni(r) profiles over the entire series of calculations with 

~o < 0 at the imaginary boundary of the imagined cylinder of radius r o we observed an additional minimum whose appearance 

can be explained by the structure of the electromagnetic field. 
The calculations carried out for  positive values of the potential go demonstrated some divergence between the 

evolut ionand stationary characteristics relat iveto the case in which go < 0 (Fig. 4). The relaxation curves Ji(t) have values 
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that are somewhat too low in order to introduce any correction factors into the resulting current to the surface of the 

electrode, and the time over which substantial values of Jl were observed are reduced as the magnetic field B o is intensified 
and as the intensity of the beam is increased. The evolution curves for the electron current are significantly distorted 

only during the initial period. Subsequently, je(t) is stabilized, tending to values prevailing in the absence of injection. 
Some increase in Je for small t is caused by the formation of potential holes and increasing potential gradients near the 
surface. Moreover, in the curves ji(t) and je(t) we observed no oscillations characteristic for the case ~o o < 0. The reason 
for this should apparently be sought in the increase in the focusing forces. With positive ~o o the increase in jpo may lead 
to the appearance of a flow of negative ions in the direction of the injected surface. Calculations have shown that the 
values of Jr, at the electrode diminish with an increase in Up ~ given equal beam densities, and they increase with an increase 
in %0 for equal Up ~ The behavior of n,,(r, z) with positive potentials qualitatively does not differ from the case ~o o < 
0. 
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